skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Halsch, Christopher_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Scientific and public interest in the global status of insects has surged recently; however, understanding the relative importance of different stressors and their interconnections remains a crucial problem. We use a meta-synthetic approach to integrate recent hypotheses about insect stressors and responses into a network containing 3385 edges and 108 nodes. The network is highly interconnected, with agricultural intensification most often identified as a root cause. Habitat-related variables are highly connected and appear to be underdiscussed relative to other stressors. We also identify biases and gaps in the recent literature, especially those generated from a focus on economically important and other popular insects, especially pollinators, at the expense of non-pollinating and less charismatic insects. In addition to serving as a case study for how meta-synthesis can map a conceptual landscape, our results identify many important gaps where future meta-analyses will offer critical insights into understanding and mitigating insect biodiversity loss. 
    more » « less
  2. Abstract Climate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high‐resolution climate data and a remotely sensed indicator of plant primary productivity. Specifically, we used Bayesian hierarchical path analysis to quantify relationships between weather and weather‐driven plant productivity on the occurrence of 94 butterfly species from three localities distributed across an elevational gradient. We found that snow pack exerted a strong direct positive effect on butterfly occurrence and that low snow pack was the primary driver of reductions during drought. Additionally, we found that plant primary productivity had a consistently negative effect on butterfly occurrence. These results highlight mechanisms of weather‐driven declines in insect populations and the nuances of climate change effects involving snow melt, which have implications for ecological theories linking topographic complexity to ecological resilience in montane systems. 
    more » « less